Functionally Gradient Tissue Scaffold Design and Deposition Path Planning for Bio-additive Processes

نویسندگان

  • AKM Khoda
  • Ibrahim T. Ozbolat
  • Bahattin Koc
چکیده

A layer-based tissue scaffold is designed with heterogeneous internal architecture. The proposed layer-based design uses a bi-layer pattern of radial and spiral layer consecutively to generate functionally gradient porosity following the geometry of the scaffold. Medial region is constructed from medial axis and used as an internal geometric feature for each layer. The radial layers are generated with sub-region channels by connecting the boundaries of the medial region and the layer’s outer contour. Proper connections with allowable geometric properties are ensured by applying optimization algorithms. Iso-porosity regions are determined by dividing the sub-regions into pore cells. The combination of consecutive layers generates the pore cells with desired pore sizes. To ensure the fabrication of the designed scaffolds, both contours have been optimized for a continuous, interconnected, and smooth deposition path-planning. The proposed methodologies can generate the structure with gradient (linear or non-linear), variational or constant porosity that can provide localized control of variational porosity along the scaffold architecture. The designed porous structures can be fabricated using bio-additive fabrication processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Multifunctional Porous Tissue Scaffolds with Continuous Deposition Path Plan

A novel modeling technique for porous tissue scaffolds with targeting the functionally gradient variational porosity with continuous material deposition planning has been proposed. To vary the porosity of the designed scaffold functionally, medial axis transformation is used. The medial axis of each layers of the scaffold is calculated and used as an internal feature. The medial axis is then us...

متن کامل

Functionally heterogeneous porous scaffold design for tissue engineering

Porous scaffolds with interconnected and continuous pores have recently been considered as one of the most successful tissue engineering strategies. In the literature, it has been concluded that properly interconnected and continuous pores with their spatial distribution could contribute to perform diverse mechanical, biological and chemical functions of a scaffold. Thus, there has been a need ...

متن کامل

Designing heterogeneous porous tissue scaffolds for additive manufacturing processes

A novel tissue scaffold design technique has been proposed with controllable heterogeneous architecture design suitable for additive manufacturing processes. The proposed layer-based design uses a bi-layer pattern of radial and spiral layer consecutively to generate functionally gradient porosity, which follows the geometry of the scaffold. The proposed approach constructs the medial region fro...

متن کامل

Direct Bio-printing with Heterogeneous Topology Design

Bio-additive manufacturing is a promising tool to fabricate porous scaffold structures for expediting the tissue regeneration processes. Unlike the most traditional bulk material objects, the microstructures of tissue and organs are mostly highly anisotropic, heterogeneous, and porous in nature. However, modelling the internal heterogeneity of tissues/organs structures in the traditional CAD en...

متن کامل

Designing Bio-mimetic Variational Porosity for Tissue Scaffolds

Reconstructing or repairing the damaged or diseased tissues with porous scaffolds to restore the mechanical, biological and chemical functions is one of the major tissue engineering strategies. Development of Solid Free Form (SFF) techniques and improvement in biomaterial properties by synergy have provided the leverage to fabricate controlled and interconnected porous scaffold structures. But ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013